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Abstract

The task of 2D object localization prediction, or the esti-
mation of an object’s future location and scale in an image,
is a developing area of computer vision research. An ac-
curate prediction of an object’s future localization has the
potential for drastically improving critical decision making
systems. In particular, an autonomous driving system’s col-
lision prevention system could make better-informed deci-
sions in the presence of accurate localization predictions
for nearby objects (i.e. cars, pedestrians, and hazardous
obstacles). Improving the accuracy of such localization sys-
tems is crucial to passenger / pedestrian safety. This paper
presents a novel technique for determining future bounding
boxes, representing the size and location of objects – and
the predictive uncertainty of both aspects – in a transit set-
ting. We present a simple feed-forward network for robust
prediction as a solution of this task, which is able to gener-
ate object locality proposals by making use of an object’s
previous locality information. We evaluate our method
against a number of related approaches and demonstrate its
benefits for vehicle localization, and different from previous
works, we propose to use distribution-based metrics to truly
measure the predictive efficiency of the network-regressed
uncertainty models.

1. Introduction
The task of 2D object localization has been an area of

heavy research in recent years. Specifically, this task in-
volves identifying the location and size of an object in an
image, often represented as a ’bounding box’. Proposed
methods, such as RCNN [14] and Fast RCNN [13], have
achieved high accuracy in 2D object localization tests per-
formed on tasks with a large amounts of training data avail-
able. These methods have been extended and improved
upon by SSD [22] and YOLO [27], in order to improve ef-
ficiency and have become capable of object localization in
real-time, while maintaining a high level of accuracy.

A natural extension of the task of 2D object localiza-
tion is the prediction of 2D object localizations (or future

Figure 1. Visualization of past localizations of a tracked vehi-
cle (orange), predicted +1 second future localization (red, dashed),
and the true +1 second future localization (white), drawn over the
+1 second future frame. The area of confidence is highlighted
around the predicted box. Our method predicts the red dashed box
as the mean B(t) of a robust 4D probability distribution based on
the Huber loss with scale parameter σ(t), given only the sequence
of orange bounding boxes as input. This model well captures the
potential amount of divergence for different input scenarios. In
both instances above, a car is observed traveling through an inter-
section, but the lateral view (bottom) has a larger spread of possi-
ble bounding boxes due to the car speeding up or slowing down.

object localization). This task is defined by the ability to
produce an accurate estimate of an object’s localization in
a future timestep, given some amount of auxiliary informa-
tion of the object (at minimum the previous localizations of
that object). Given that we now have methods for obtain-
ing previous localizations in real-time, it is now sensible
to work towards producing a real-time method for object
localization prediction which makes use of those previous
localizations.

Accurate localization prediction is a potentially invalu-
able source of information especially for decision-making
systems that rely on complex, real-time optimal control,



such as collision prevention systems present in Advanced
Driver Assistance Systems (ADAS) and Autonomous Vehi-
cles (AV). Decisions made by these systems result in the al-
teration of the acceleration or steering direction of the vehi-
cle, and are consequentially crucial to passenger and pedes-
trian safety. Accurately and efficiently extrapolating poten-
tial object trajectories thus decreases reactionary pressure
from the control planning algorithms in these systems. A
growing number of techniques [32] have investigated over-
head or 3D future-state modeling for objects in the vicinity
of an AV. However, such models inherently rely on tracked
observations made from on-board sensors (e.g., bounding
box detections in forward-facing cameras [26]), and rela-
tively few approaches have explored whether accurate fu-
ture localization in the sensor space can help to improve
planning or tracking algorithms, or indeed, whether such
prediction is even feasible.

Motivated by this lack of analysis and toward the indus-
try goal [28] of integrating machine-learning prediction al-
gorithms in planning/tracking systems, we propose a data-
driven approach for predicting future vehicle localizations,
as well as uncertainty in this prediction, from ego-centric
views on a moving car (Fig. 1). Uncertainty estimation –
namely aleatoric uncertainty, which relates to inherent am-
biguities in possible output states [16] – is a particularly im-
portant aspect to characterize in vehicle localization predic-
tion, as the relatively short observation times and variability
in driver behaviors can lead to highly divergent future states
for similar initial scenarios. We thus seek a simple model
that can model future localizations with as high of a confi-
dence as possible, while also relating the spread of possible
future states in the bounding box domain. Such informa-
tion can be used, for example, to determine the region of
the image in which the actual future bounding box is likely
to occur with a certain level of confidence.

The key contributions of this paper are the following:

• We present a feed-forward neural network capable of
accurately performing object localization prediction
from a first-person vehicular perspective, solely using
prior bounding boxes as input.
• We introduce a probabilistic formulation of the Huber

loss that allows us to capture uncertainty in the future
bounding box location while maintaining robust loss
properties during training.
• We propose to evaluate the predictive distribution of

a learned regressor, which better reflects the aleatoric
accuracy of the predictor than existing metrics that di-
rectly evaluate the prediction mean against the ground-
truth observation.
• We demonstrate that simple polynomial regression

works at least as well as using a recurrent neural net-
work (RNN)-based regressor to generate future local-
ization predictions. In addition to being more effi-

cient, this goes against trends in state of the art meth-
ods like [4] that expect an RNN to be more efficient in
modeling uncertainty.

The rest of the paper is organized as follows: Sec-
tion 2 reviews related work for both general and vehicle-
specific localization prediction. Section 3 details our
neural-network-based approach and describes the integra-
tion of uncertainty estimation into the Huber loss. Experi-
ments and results are presented in Section 4, and we sum-
marize our work in Section 5.

2. Related Work
Recent computer vision applications for future object

localization have been partially inspired by predicting the
motion of humans. One influential work is that of Alahi
et al. [1], who trained a recurrent neural network (RNN)
to generate probabilistic future trajectories for indepen-
dent pedestrians, which is meant as a data-driven alter-
native to hand-tuned crowd navigation models. Among
other non-vehiclar works, perhaps most relevant to our own
is that of Yagi et al. [30], who construct a convolution-
deconvolution architecture for the task of future person lo-
calization. They utilize three-input streams for encoding
location-scale information, the motion of the camera wearer
(ego-motion), and human pose information. Outputs of
these input streams are concatenated and fed to a deconvo-
lutional network to generate future 2D joint locations. How-
ever, this model does not consider aleatoric uncertainty.

Vehicle localization/motion prediction is a quickly grow-
ing area of research, with several contemporary approaches
to our own and many other recent efforts. The majority of
related works have focused on overhead modeling scenar-
ios, where positions and trajectories are expressed in the
coordinates of the 2D road surface [32]. Relatively few
works have investigated 2D future vehicle localization for
ego-motion video scenarios, although a number of vehi-
cle tracking approaches use simple linear or quadratic re-
gression to predict a rough localization of current bounding
boxes given previous observations.

Among many recent and relevant overhead modeling
scenarios [23, 26, 8, 7, 29], Altché and de La Fortelle [2]
use a long short-term memory (LSTM) RNN to predict the
overhead trajectory of a target vehicle given sequentially
provided observations of the vehicle and its surrounding
neighbors’ positions and velocities. Kim et al. [17] pre-
dict the relative overhead positions of surrounding vehi-
cles using a generic LSTM-RNN, with separate RNN in-
stances being applied to each tracked vehicle. Indepen-
dent RNNs are trained to predict positions at 0.5s, 1.0s,
and 2.0s in the future. Li et al. [21] train a two-layer hid-
den Markov model to classify driving situations and then
predict overhead trajectories for all vehicles in the scene
using scenario-specific state behaviors. Driver actions are



simultaneously evolved according to their current scenario
states and a learned Gaussian mixture model for state tran-
sitions. While we do not model state transitions, our model
could serve to inform such a predictive formulation. Lee
et al. [20] propose to use a conditional variational autoen-
coder to capture the possible future states of a given input
scenario in an overhead representation. As part of their
pipeline, they train an RNN to create samples from the non-
parametric underlying distribution. Our approach contrasts
theirs by directly regressing a distribution of localization
transformations, rather than using a generative model that
must be sampled from in order to predict possible paths.
Their method also uses a Euclidean-distance-based loss ob-
jective, unlike our proposed robust loss objective, which is
a confidence-weighted version of the Huber loss [15].

Detection-based 2D vehicle tracking pipelines typically
also make use of simple predictive models that allow them
to branch and bound correspondences in the current set of
putative detections. For example, Choi [6] uses linear and
quadratic models to prune bounding box hypotheses, and
Duelholm et al. [9] use a simple linear model predict bound-
ing boxes for objects that have lost tracking. We explore the
potential of using these simpler continuous models instead
of heavyweight, discrete RNN architectures when modeling
the future state progression.

Possibly the most related approach to our work is the
egocentric future bounding box localization method of
Bhattacharyya et al. [4]. There, the authors use an RNN to
jointly predict future vehicle odometry and future bounding
boxes for pedestrians. They adopt a confidence-weighted
Gaussian loss to model the future bounding boxes in a man-
ner that captures both aleatoric and epistimological uncer-
tainty. We demonstrate that this type of loss is not robust
for future vehicle localization. Finally, we also note a num-
ber of contemporary works have recently appeared online
covering similar topics in overhead and egocentric future
localization [11, 10, 31, 24]. To our knowledge, however,
no other works have explored improving the modeling of
aleatoric uncertainty by adopting robust (particularly, non-
Gaussian) underlying distributions.

3. Methods
The general goal of future object localization is to

regress a model of not-yet-reached state(s) given some num-
ber of previous observations up to the current moment in
time, t0. In our case, previous observations consist of n
bounding boxes for a single object (i.e., a vehicle) obtained
by a 2D object tracking system over the last ns seconds,
where s is the frame-rate of the tracker. Given these bound-
ing boxes {B−n+1, B−n+2, . . . , B0} as input, we train a
neural network to regress a function B(t) that yields a pre-
dicted bounding box for the object at any future time t > t0.
Since uncertainty in object localization generally grows as a

function of time, the network is also trained to output a sec-
ond function, σ(t), that models the uncertainty region for
the localization B(t); smaller σ(t) values indicate higher
confidence. Together, these regressed functions model the
distribution of possible object states that may be observed
at time t.

3.1. Data Representation and Architecture

Our network takes as input n prior bounding boxes
{Bi}, with Bi = [xi, yi, wi, hi] denoting the (x, y) cen-
ter, width, and height of the box. The network architec-
ture consists of a simple 4-layer feed-forward neural net-
work. Each hidden layer is a fully connected layer consist-
ing of 64 nodes, with ReLu [25] activations after each layer.
The final layer is a linear regressor that outputs param-
eters

(
θB =

{
θxB , θ

y
B , θ

w
B , θ

h
B

}
, θσ =

{
θxσ, θ

y
σ, θ

w
σ , θ

h
σ

})
for

the bounding box predictor B(t; θB) and uncertainty model
σ(t; θσ). In our implementation, each of the four bounding
box dimensions are modeled by a separate prediction func-
tion that relies on its own set of parameters, i.e.,

B(t; θB) =
[
Bx(t; θ

x
B), By(t; θ

y
B), Bw(t; θ

w
B), Bh(t; θ

h
B)
]
,

(1)
and similarly for σ(t; θσ):

σ(t; θσ) =
[
σx(t; θ

x
σ), σy(t; θ

y
σ), σw(t; θ

w
σ ), σh(t; θ

h
σ)
]
.
(2)

3.2. Relative Transformations as Output

Existing approaches for future object localization [31,
30] have sought to output a transformation of bounding
boxes in the image space, i.e., they return pixel coordinate
offsets for the box center and a pixel change in width and
height. Instead of regressing to the pixel displacement from
the most recent box to the predicted box, we regress to
a scale-invariant transformation [14]. This transformation
consists of a width-space translation of the center coordi-
nate, and a log-space translation of the width and height.
Our main motivation for using such normalized transforma-
tions is that they allow us to assume a log-linear distribution
of the width and height parameters (see Fig. 4).

A ground-truth scale-invariant transformation, T̂ (t),
from anchor box B0 (the most recent known bounding box)
to the ground-truth prediction box, B̂(t), is generated for
training as follows:

T̂ (t) = [T̂x(t), T̂y(t), T̂w(t), T̂h(t)] (3)

T̂x(t) =
x̂(t)− x0

w0
T̂y(t) =

ŷ(t)− y0
h0

T̂w(t) = log

(
ŵ(t)

w0

)
T̂h(t) = log

(
ĥ(t)

h0

)



These serve as our target values during training. To
generate a predicted box, B(t), from an anchor box using
the network-regressed transformation T (t), we reverse the
transformation, and apply it to anchor box B0:

T (t) = [Tx(t), Ty(t), Tw(t), Th(t)] (4)

x(t) = w0Tx(t) + x0 y(t) = h0Ty(t) + y0

w(t) = w0 exp
(
Tw(t)

)
h(t) = h0 exp

(
Th(t)

)
Thus, our training fits T (t) to T̂ (t), rather than B(t) to

B̂(t), and the predictor as a function of network output can
instead be understood as B(t; θB) = B(B0, T (t; θB)).

3.3. Predictive Function Regression

In addition to performing absolute transformation regres-
sion, previous works in future object localization have mod-
eled B(t) in various forms at fixed timepoints in the future,
including as the sequential application of a recurrent neural
network (RNN) and a separate regression of the indepen-
dent transformation at each future timepoint. For the task
of 2D vehicle localization, however, it is potentially use-
ful to allow predictions at arbitrary future timepoints, for
example to provide higher-latency tracking algorithms with
future predictions that temporally align to the frame of de-
ployment. Moreover, an RNN must be sequentially applied
to reach a desired discrete timestep. We also argue that,
at least for our use-case, the RNN prediction approach is
‘overkill’, in that its ability to model highly variable motion
patterns (e.g., the path of a human navigating a crowd) is not
necessary for the relatively smoother trajectories of automo-
tive vehicles. We accordingly propose to model the motion
trajectory as an ordinary polynomial, and we demonstrate
that this approach fits the expected transformation distribu-
tion with at least as much efficiency as an RNN approach,
while being simpler to compute and not requiring iterative
application.

Recall that our network output consists of separate pa-
rameters (θdB , θ

d
c ) for each bounding box dimension d ∈

{x, y, w, h}. For our bounding box predictor, we choose to
model θdB = (θ

d(1)
B , θ

d(2)
B , . . . , θ

d(p)
B ) as the coefficients of

a pth-degree zero-intercept polynomial. Here, p is a hyper-
parameter of our algorithm. The associated transformation
for dimension d is thus

Td(t; θ
d
B) =

p∑
i=1

θ
d(i)
B ti. (5)

For our confidence regression, we expect the uncer-
tainty in our future bounding box location to grow (per-
haps slowly) as t increases. Thus, we model the uncertainty
σd(t; θ

d
σ) of dimension d as

σd(t; θ
d
σ) = |θd(1)σ t|+ |θd(0)σ |+ ε, (6)

where θdσ = (θ
d(0)
σ , θ

d(1)
σ ), and ε is a small positive constant

that helps avoid poor conditioning during training. In all
our experiments, we use ε = 0.001, and all our networks
output p+ 2 coefficients for each bounding box dimension,
or 4p+ 8 total outputs.

3.4. Training Objective with Confidence

Our training objective minimizes a localization loss
which measures error from the model’s predicted transfor-
mation, T (t), to the target transformation T̂ (t) at multiple
future timepoints {tk} with ground-truth localizations. We
adopt the Huber loss [15] (sometimes called the smoothL1
loss) due to its ability to robustly train against abnormal or
outlier ground-truth bounding boxes [13]. This loss is ap-
plied separately over each bounding box dimension d.

Different from similar work in object localization pre-
diction [20, 4, 31], we thus seek to robustly characterize in
σd(t) the potential confidence in our prediction. This can be
directly integrated into the Huber loss. Consider the typical
definition of the Huber loss between a predicted value x and
target value x̂:

H(x̂, x) =

{
1
2 (x̂− x)

2 if |x̂− x| < τ

τ |x̂− x| − 1
2τ

2 otherwise,
(7)

where τ is a threshold at which the function switches from
an L2-loss to an L1-loss. Taking a maximum-likelihood ap-
proach, we can interpret a solution to this loss as minimiz-
ing the negative log-likelihood of a modified, heavy-tailed
version of the Gaussian distribution with mean µ = x and
fixed scale parameter σ:

p(x̂|x, σ) =


1
c exp

(
− (x̂−x)2

2σ2

)
if |x̂− x| < τ

1
c exp

(
− τ
σ2 |x̂− x|+ τ2

2σ2

)
otherwise,

(8)
where c = σ

√
2π erf( τ

σ
√
2
)+ 2σ2

τ exp(− τ2

2σ2 ) is a normaliz-
ing constant that makes the area under the distribution curve
equal to one, and erf(·) is the Gauss error function. As ex-
plained below, we use τ = 1.345σ.

Here, we consider σ to be unknown a priori and thus
regress it as σd(t). Our prediction for transformation di-
mension d becomes our distribution mean, i.e., µ = Td(t).
Taking the negative log-likelihood of Eq. (8), we arrive at
the confidence-weighted Huber training objective for our
bounding box regression:

min
θdB ,θ

d
σ

∑
d

Hd(T̂d(t), Td(t; θ
d
σ), σd(t; θ

d
σ)), (9)

Hd(T̂ , T, σ) = log c+

{
(T̂−T)

2

2σ2 if |T̂ − T | < τ
τ
σ2 |T̂ − T | − τ2

2σ2 otherwise,

where c is the normalizing constant defined above.



Value for τ . Ideally, the hyperparameter τ should scale
with the certainty in the prediction. To provide some in-
tuition for this property, consider the functional design of
the Huber loss. The L1 tails of the loss provide a robust
function for significantly abnormal/erroneous predictions;
this dampens gradient steps toward outlier predictions dur-
ing training. The L1 gradient around zero, however, is gen-
erally too large for the most accurate training cases, and
thus to prevent overfitting and instability, the L2 loss is sub-
stituted when the error is small, since it has a comparably
flatter gradient for errors in [−1, 1]. Thus, if the variance in
the prediction-vs-ground-truth error is expected to be small
(for instance, in our case, particularly when t is close to
t0), we should seek to have higher robustness to high-error
ground-truth observations, since they are by definition out-
liers according to the variance model. On the other hand,
larger uncertainty should lead to larger τ , since the spread
of “relatively accurate” ground-truth observations is larger
and we are therefore less confident that the associated gra-
dient direction will lead to a general overall improvement.

In summary, τ is a scaled version of uncertainty com-
puted as: τd(t) = Mσd(t), where hyperparameter M =
1.345 was suggested by Huber to offer a good trade-off
point for balancing the efficiency of the Gaussian with the
robust L1 tails [19]. While the properties of the Huber
scale parameter (σ) are generally well known [19], to our
knowledge the trained regression of its value has not been
explored for robust aleatoric modeling.

4. Experiments
We outline two main points of comparison for the task

of future vehicle localization: (1) We evaluate whether our
proposed confidence-weighted Huber loss (Eq. 9) is bet-
ter suited for heteroscedastic modeling versus alternative
probability-based loss functions. To this end, we also com-
pute results for versions of our network trained with L1 and
L2 confidence-weighted loss objectives, which respectively
correspond to Laplace and Gaussian distribution models
(c.f. Eq. (8)). We demonstrate that our robust aleatoric ob-
jective better learns the distribution space of possible future
bounding box transformations. (2) We compare the results
of our direct polynomial regression against the regression of
an initial state for a co-trained RNN that predicts localiza-
tions, which has been proposed in similar approaches [4].

In addition to exploring the space of training configura-
tions, we also propose alternative metrics to the displace-
ment error and intersection-over-union statistics reported in
existing works on future localization. Specifically, we an-
alyze the accuracy of the predicted distribution of possible
transformations compared to the ground-truth distribution
of the testing data, instead of measuring whether the pre-
dicted future state evolved as predicted. This analysis gives
a more holistic understanding of whether the variability of

possible future states is truly understood by the network.
In all experiments, we evaluate our model using p = 6,

which was experimentally chosen for p from 2 to 7 because
it gave the lowest training loss across the L1, L2, and Huber
models. Each network is trained using a batch size of 128
and a learning rate of 5e-4 with Adam optimization [18].

4.1. Dataset and Implementation

To evaluate our methods, we train and test on samples
generated from the KITTI “Raw” dataset [12]. This dataset
consists of 38 videos with object tracklet information for
various types of driving environments including: city, res-
idential, and road settings. We consider the vehicle object
tracklet labels ‘Car’, ‘Van’, and ‘Truck’ during evaluation.

We adapt the supplied tracking information for use with
the vehicle localization prediction task. First, we iso-
late continuous two-second periods (20 frames) of track-
ing information for a given object; this makes up one sam-
ple. The first second of tracking information (defined by
ten bounding boxes, split a tenth of a second apart) are
established as past observations, and used as the input
{B−n+1, B−n+2, . . . , B0} for a given prediction task.

The object localizations associated with the last ten
frames are reserved as the ground truth bounding boxes for
the sample. We construct transformations from the anchor
B0 to each of the target bounding boxes {B1, B2, . . . , B10}
via the process detailed above. This set of ten transforma-
tions serve as the regression targets for the sample.

Our RNN implementation is a stand-alone network that
takes as input the previous bounding box transformation
and outputs a new transformation. This architecture is se-
quentially applied to output transformations at 0.1s inter-
vals. The network consists of a 64-element gated recurrent
unit (GRU) layer [5], followed by a 64-element hidden layer
processing the GRU’s hidden state, followed by a final lin-
ear layer. We modify our proposed neural network to output
an initial hidden state for the RNN, instead of polynomial
coefficients. The first future transformation is estimated di-
rectly from this initial hidden state, bypassing the RNN.

4.2. IoU and Displacement Error Analysis

We begin by reporting two widely used measurements
for analyzing future bounding box locations: displacement
error (DE) and intersection-over-union (IoU). Displacement
error evaluates location prediction error and is calculated
by taking the Euclidean distance between the centers of the
predicted B(t) and ground-truth B̂(t) bounding boxes. We
report DE for +0.5s and +1.0s in the future, and we also
report average displacement error (ADE) for future time-
points ranging from +0.1s to +1.0s at intervals of 0.1s. IoU
evaluates location and scale error for our network’s predic-
tions and is computed as the overlap ratio for the predicted
and ground-truth bounding boxes versus their joint area.



All Hard
DE ADE IoU DE ADE IoU

Loss Func. +0.5s +1.0s +0.5s +1.0s +0.5s +1.0s +0.5s +1.0s
– constant 32.06 72.15 36.98 0.498 0.339 44.23 102.40 51.62 0.326 0.128
– linear 14.61 39.51 17.95 0.663 0.464 23.14 63.27 28.56 0.492 0.219

L1 p = 6 12.81 29.05 14.78 0.697 0.564 17.06 38.06 19.56 0.607 0.475
L2 p = 6 15.13 37.43 18.12 0.671 0.521 20.90 51.97 25.02 0.563 0.394

Huber p = 6 12.58 29.18 14.72 0.708 0.584 16.18 36.76 18.76 0.622 0.488
Huber RNN 14.01 31.37 16.12 0.686 0.570 19.62 44.63 22.71 0.577 0.442

Table 1. Displacement error and IoU scores for future prediction using different confidence-weighted objectives and functional regressions,
averaged over all testing samples. The middle columns consider all testing samples, and the right columns consider only “hard” samples.

DE, ADE, and IoU results are shown in Table 1, along
with two reference models, one of which predicts no bound-
ing box motion (“constant”), and another which uses simple
linear extrapolation of the transformation from t = −0.1s
to t = 0s (“linear”). We report the average statistic over
all test samples, as well as the average over only “hard” test
cases (54% of the test samples). The latter ignores “easy”
test cases, where the t = +1.0s bounding box can be pre-
dicted with IoU greater than 0.5 using simple linear extrap-
olation. From the table, we observe that the transformation
means predicted by the L2 loss are, on average, less accu-
rate than those predicted by the L1 or Huber losses. How-
ever, we argue that these statistics only tell part of the story
in terms of how the different predictions compare.

Distribution of IoU scores and inadequacy of exact
evaluation metrics. DE and IoU are scores of future pre-
diction: They measure how often the predicted bounding
box distribution meanB(t) happened to match well with the
actual future bounding box. Neither measure takes into ac-
count the estimated uncertainty, σ(t), and effectively, these
metrics model the future as deterministic. This can readily
be observed if we visualize the distribution of IoU scores,
rather than simply assessing their mean. As shown in Fig. 2,
the L1 loss achieved a higher rate of “exactly correct” pre-
dictions compared to the Huber loss, and the Huber loss had
a slightly higher rate of “mostly right” (IoU around 0.75)
predictions. We can conclude that the L1 loss was more
effective at exactly regressing certain cases. However, this
says very little about the underlying aleatoric encodings of
the networks: e.g., both losses exhibit a similar number of
complete failure cases (IoU = 0) that may still fit within a
comfortable confidence interval given σ(t).

To glean a broader picture of network uncertainty, Bhat-
tacharyya et al. [4] propose to evaluate the relationship be-
tween estimated uncertainty and the distance of the pre-
dicted mean from the ground-truth future observation. They
note that the predicted uncertainty provides an upper bound
on the error of the predictive mean and conclude that the
model is thus useful in its prediction. While this is correct,
the correlation of the uncertainty and error only demon-
strates that the uncertainty model is behaving as intended:
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Figure 2. IoU distributions for our network trained with an L1 loss
and p = 6 (left) and a Huber loss with p = 6 (right) at t = +1.0s.
The peaks at IoU = 1 are partly due to stationary test instances.

The model is accurate in that it has a sense of when it might
be wrong, but this observation says nothing about the effi-
ciency of the model, that is, how correct it is about what the
possible future states of a scenario may be. For instance,
the uncertainty for the lower image in Fig. 1 might be larger
than that for the top image, but if the uncertainty captures
highly unlikely bounding box transformations that, say, al-
low the car to drastically change its size or vertical position
in the image, then the underlying model is inefficient. We
therefore argue that network models must be compared on
the basis of how well their predictions match the probabil-
ity space of actual future scenarios for a given input, rather
than based on the a posteriori evaluation of their regressed
mean against the known future occurrence.

4.3. Test Set Distribution Matching

When assessing the “understanding” of the future that
our networks have learned, a proper statistic should relate
how accurately and efficiently the distribution (B(t), σ(t))
describes the probabilistic space of all possible future states
for a given scenario. If the underlying generative models
were well understood, this could be assessed for each test
case separately by repeatedly simulating future states for
the given input and performing a statistical test on this sam-
pling versus the regressed distribution. In lieu of a viable
per-instance sampling approach, the next-best solution is
to evaluate how well the space of regressed distributions
matches the distribution of test samples. A regressor that
is accurate will closely match the ground-truth values.



More specifically, we analyze the distribution of all 4D
bounding box transformations T̂ (+1.0s) in our test set. We
bin the transformation space into voxels of size {0.1}4 units
in each dimension, corresponding to a 10% shift in x and y
relative to the anchor box size and a 10% log-scale change
in width and height. Ground-truth test-set transformations
are then aggregated in this space using quadrilinear inter-
polation. The first images of Figs. 3 and 4 show the log-
marginals of this aggregation for (x, y) and (w, h), respec-
tively. More likely distributions appear brighter, and black
regions correspond to voxels containing no transformations.

Next, we compare the aggregated predicted distribu-
tion of each analyzed network against this 4D test-set
distribution. To obtain an aggregated predicted distri-
bution for a given network, we first calculate the pre-
dicted distribution p(k)(T̂ (k)|T (k)(+1.0s), σ(k)(+1.0s)) =∏
d p

(k)
d (T̂

(k)
d |T

(k)
d (+1.0s), σ

(k)
d (+1.0s)) for each test in-

stance k, where p(k)d (·) follows Eq. 8 in the case of the
Huber loss, a Gaussian distribution for the L2 loss, and a
Laplace distribution for the L1 loss. We then compute the
probability of the transformation at each voxel center in the
binned 4D space and normalize the integral of the space to
sum to one. We calculate the average probability over all
test cases to arrive at the final distribution for the 4D space.
Figs. 3 and 4 show aggregations for different confidence-
weighted loss functions, and also using an RNN.

In Table 2, we compare the predicted distribution T to
the ground-truth distribution T̂ using the squared Hellinger
distance H2(T , T̂ ) [3], which summarizes the overall dis-
tance between distributions. The metric is computed as
1
2 ||
√
T −

√
T̂ ||22, where

√
T denotes the element-wise

square root of the discrete probability volume; this metric
summarizes the overall distance between distributions.

As can be seen in the table, the L2 loss still displays the
worst performance – being a less robust metric, it evidently
failed to adequately capture the edges of the distribution,
which can be qualitatively observed in Figs. 3 and 4. The L1
metric is more robust, but it has higher error than our pro-
posed confidence-weighted Huber loss. Fig. 3 also qualita-
tively suggests that the L1 loss yields slightly lower predic-
tive confidences near the distribution tails. Interestingly, the
RNN model, which has a much larger set of learned param-
eters and should theoretically be able to characterize a much
wider set of future motions, does not outperform our poly-
nomial models. On some level, this may be due to the nature
of the dataset, which has a relatively short time horizon and
captures objects with highly dynamic but smooth trajecto-
ries. We conclude that the complexity of RNNs is ultimately
not necessary for modeling near-future vehicle localization,
and due to their need to be iteratively applied to compute
future states and their computational overhead, we advocate
for the simpler polynomial regression proposed here.

Config. L1 L2 Huber Huber (RNN)
H2(T , T̂ ) 0.568 0.607 0.562 0.562

Table 2. Squared Hellinger distance between the ground-truth
and predicted test-set transformation distributions, using different
confidence-weighted objectives and functional regressions.
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Figure 3. Marginal log-probability distributions for the space
of (Tx(+1.0s), Ty(+1.0s)) transformations. Top: Ground-truth
distribution. Other rows: Distributions for different confidence-
weighted losses and predictive function parameterizations.
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Figure 4. Marginal log-probability distributions for the space
of (Tw(+1.0s), Th(+1.0s)) transformations. Tw (x-axis) ranges
from -0.9 to 1.4, and Th (y-axis) ranges from -0.6 to 1.2.

5. Conclusion

In this paper, we introduced a robust neural network
framework for predicting future vehicle localizations while
accounting for inherent aleatoric uncertainty. We demon-
strated that networks trained using a confidence-weighted
Huber loss have better efficiency for modeling real-world
future scenarios versus confidence-weighted L1 and L2
losses, and we argued for a distribution-based approach to
compute this difference. Our results also showed that using
RNNs to regress future vehicle states, which has been a re-
cent trend, is at minimum no more performant than using a
simpler polynomial model. In the future, our proposed ap-
proach could perhaps be extended to better model the inter-
relationship between the dimensions of bounding box trans-
formations, rather than considering each as having a sepa-



rate underlying probability distribution. We are also excited
about the future integration of predictive machine-learning
approaches like ours into planning and tracking systems,
which is an open goal for the AVs [28] that could further
the field towards full vehicle autonomy.
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