

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overview

prior localizations, true +1s future localization (white), mean for +1s localization, location probability for +1s

Robust Aleatoric Modeling for Future Vehicle Localization

Max Hudnell, True Price, Jan-Michael Frahm {mhudnell, jtprice, jmf}@cs.unc.edu

Method

Supported by NSF grant No. CNS-1405847

$$T_d(t;\theta_B^d) = \sum_{i=1}^p \theta_B^{d(i)} t^i.$$

- We maximize the likelihood of a distribution

$$p(\hat{x}|x,\sigma) = \begin{cases} \frac{1}{c} \exp\left(-\frac{(\hat{x}-x)^2}{2\sigma^2}\right) & \text{if } |\hat{x}-x| < \tau \\ \frac{1}{c} \exp\left(-\frac{\tau}{\sigma^2}|\hat{x}-x| + \frac{\tau^2}{2\sigma^2}\right) & \text{otherwise,} \end{cases}$$

$$Objective function:$$

$$\min_{\theta_B^d, \theta_\sigma^d} \sum_d H_d(\hat{T}_d(t), T_d(t; \theta_\sigma^d), \sigma_d(t; \theta_\sigma^d))$$

$$H_d(\hat{T}, T, \sigma) = \log c + \begin{cases} \frac{(\hat{T}-T)^2}{2\sigma^2} & \text{if } |\hat{T}-T| < \tau \\ \frac{\tau}{\sigma^2}|\hat{T}-T| - \frac{\tau^2}{2\sigma^2} & \text{otherwise,} \end{cases}$$

$$c = \sigma\sqrt{2\pi} \operatorname{erf}(\frac{\tau}{\sigma\sqrt{2}}) + \frac{2\sigma^2}{\tau} \exp(-\frac{\tau^2}{2\sigma^2}) \qquad \tau = 1.345\sigma$$

	<u> </u>			
	A			
	Loss			
	_			
_				
	L1			
	L2			

LONG BEACH CALIFORNIA June 16-20, 2019

Results

Comparison of Loss / Model Type

Marginal log-probability distributions for +1s

Config.	L1	L2	Huber	Huber (RNN)
$\left \mathcal{H}^2(\mathcal{T}, \hat{\mathcal{T}}) ight $	0.568	0.607	0.562	0.562

 I_{W}