## Robust Aleatoric Modeling for Future Vehicle Localization



True Price

Max Hudnell



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

6/17/2019

Jan Michael Frahm



#### The Task

#### What is (2D) future vehicle localization?

- Localization location and scale of object
- => predicting where a vehicle is going to be



.

#### **Our Goal**

- 1. Predict where an object is likely to be
- 2. Produce an uncertainty estimate for our prediction





#### **Related Work**

- W. Choiet al. \_ Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor
- Dueholm et al. Trajectories and Maneuvers of Surrounding Vehicles with Panoramic Camera Arrays
  - Object tracking
  - Utilize bounding box predictions
    - Linear and quadratic



#### **Related Work**

Long-Term On-Board Prediction of People in Traffic Scenes under Uncertainty

- A. Bhattacharyyæt al.,CVPR 20 18
- **RNN**

UNC-CS

Gaussian uncertainty





<sup>1</sup>R. Girshick (2013), Rich Feature Hierarchies



Method 
$$B_i = [x_i, y_i, w_i, h_i]$$



• Build polynomial from coefficients:

$$T_d(t;\theta_B^d) = \sum_{i=1}^p \theta_B^{d(i)} t^i.$$
  
$$\sigma_d(t;\theta_\sigma^d) = |\theta_\sigma^{d(1)}t| + |\theta_\sigma^{d(0)}|$$







### **Training for Confidence**

• Formulating a Huber distribution



Used for bounding box regression

#### Huber loss:

$$H(\hat{x}, x) = \begin{cases} \frac{1}{2} \left( \hat{x} - x \right)^2 & \text{if } |\hat{x} - x| < \tau \\ \tau |\hat{x} - x| - \frac{1}{2} \tau^2 & \text{otherwise,} \end{cases}$$

<sup>1</sup>R. Girshick (2015), Fast R-CNN



### **Training for Confidence**

• Formulating a Huber distribution



UNC-CS

Gaussian pdf:
$$f(x \mid \mu, \sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Laplace pdf:

$$f(x \mid \mu, b) = rac{1}{2b} \exp igg( -rac{|x-\mu|}{b} igg)$$

Huber pdf:

$$p(\hat{x}|x,\sigma) = \begin{cases} \frac{1}{c} \exp\left(-\frac{(\hat{x}-x)^2}{2\sigma^2}\right) & \text{if } |\hat{x}-x| < \tau \\ \frac{1}{c} \exp\left(-\frac{\tau}{\sigma^2}|\hat{x}-x| + \frac{\tau^2}{2\sigma^2}\right) & \text{otherwise,} \end{cases}$$

### Experiments: Dataset

- KITTI "Raw" dataset
  - 38 videos of various scenes
- Sample creation:
  - Isolate 20 continuous frames for trackedobjects
    - Use first 10 as 'prior' input
    - Next 10 frames areargets





### Experiments: Evaluating the mean

|       |          | All   |       |       |       |       | Hard  |        |       |       |       |
|-------|----------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|
|       |          | DE    |       | ADE   | IoU   |       | DE    |        | ADE   | IoU   |       |
| Loss  | Func.    | +0.5s | +1.0s |       | +0.5s | +1.0s | +0.5s | +1.0s  |       | +0.5s | +1.0s |
| -     | constant | 32.06 | 72.15 | 36.98 | 0.498 | 0.339 | 44.23 | 102.40 | 51.62 | 0.326 | 0.128 |
| _     | linear   | 14.61 | 39.51 | 17.95 | 0.663 | 0.464 | 23.14 | 63.27  | 28.56 | 0.492 | 0.219 |
| L1    | p = 6    | 12.81 | 29.05 | 14.78 | 0.697 | 0.564 | 17.06 | 38.06  | 19.56 | 0.607 | 0.475 |
| L2    | p = 6    | 15.13 | 37.43 | 18.12 | 0.671 | 0.521 | 20.90 | 51.97  | 25.02 | 0.563 | 0.394 |
| Huber | p = 6    | 12.58 | 29.18 | 14.72 | 0.708 | 0.584 | 16.18 | 36.76  | 18.76 | 0.622 | 0.488 |
| Huber | RNN      | 14.01 | 31.37 | 16.12 | 0.686 | 0.570 | 19.62 | 44.63  | 22.71 | 0.577 | 0.442 |

#### Metrics:

• Intersection over Union (IoU):



 $|A \cap B|$  $|A \cup B|$ 

• Displacement Error (DE):









#### Experiments: Evaluating uncertainty



**UNC-CS** 



GT L1 (p = 6) L2 (p = 6) Huber (p = 6) Huber (RNN) Config. || L1 | L2 | Huber | Huber (RNN)

| Config.                                        |       | L2    | Huber | Huber (RNN) |
|------------------------------------------------|-------|-------|-------|-------------|
| $\mathcal{H}^2(\mathcal{T},\hat{\mathcal{T}})$ | 0.568 | 0.607 | 0.562 | 0.562       |

#### Bin entire test set

Metric:

• Squared Hellinger Distance:

$$\mathcal{H}^2(\mathcal{T},\hat{\mathcal{T}}) = rac{1}{2} ||\sqrt{\mathcal{T}} - \sqrt{\hat{\mathcal{T}}}||_2^2$$

#### Future Work

$$\sigma(t) = [\sigma_x(t), \sigma_y(t), \sigma_w(t), \sigma_h(t)]$$

- Model uncertainty as a joint distribution
- Integrate withobject tracking





# Thank you!

## **Questions?**





**UNC-CS** 

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



